Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | \(-h_{6}+h_{5}-h_{3}+h_{1}\) | \(g_{6}+g_{3}\) | \(g_{5}+g_{1}\) | \(g_{16}+g_{15}+g_{12}+5/3g_{2}\) | \(g_{11}+g_{7}\) | \(-g_{31}-2g_{30}+g_{29}\) | \(g_{32}\) | \(g_{33}\) | \(g_{34}\) | \(g_{36}\) |
weight | \(0\) | \(\omega_{2}\) | \(\omega_{2}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(6\omega_{1}\) | \(6\omega_{1}+\omega_{2}\) | \(6\omega_{1}+\omega_{2}\) | \(6\omega_{1}+2\omega_{2}\) | \(10\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{2}-6\psi\) | \(\omega_{2}+6\psi\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(6\omega_{1}\) | \(6\omega_{1}+\omega_{2}-6\psi\) | \(6\omega_{1}+\omega_{2}+6\psi\) | \(6\omega_{1}+2\omega_{2}\) | \(10\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{\omega_{2}-6\psi} \) → (0, 1, -6) | \(\displaystyle V_{\omega_{2}+6\psi} \) → (0, 1, 6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | \(\displaystyle V_{6\omega_{1}+\omega_{2}-6\psi} \) → (6, 1, -6) | \(\displaystyle V_{6\omega_{1}+\omega_{2}+6\psi} \) → (6, 1, 6) | \(\displaystyle V_{6\omega_{1}+2\omega_{2}} \) → (6, 2, 0) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}+\omega_{2}\) \(4\omega_{1}+\omega_{2}\) \(6\omega_{1}-\omega_{2}\) \(2\omega_{1}+\omega_{2}\) \(4\omega_{1}-\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-4\omega_{1}+\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) \(-6\omega_{1}+\omega_{2}\) \(-4\omega_{1}-\omega_{2}\) \(-6\omega_{1}-\omega_{2}\) | \(6\omega_{1}+\omega_{2}\) \(4\omega_{1}+\omega_{2}\) \(6\omega_{1}-\omega_{2}\) \(2\omega_{1}+\omega_{2}\) \(4\omega_{1}-\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-4\omega_{1}+\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) \(-6\omega_{1}+\omega_{2}\) \(-4\omega_{1}-\omega_{2}\) \(-6\omega_{1}-\omega_{2}\) | \(6\omega_{1}+2\omega_{2}\) \(4\omega_{1}+2\omega_{2}\) \(6\omega_{1}\) \(2\omega_{1}+2\omega_{2}\) \(4\omega_{1}\) \(6\omega_{1}-2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(4\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-6\omega_{1}+2\omega_{2}\) \(-4\omega_{1}\) \(-2\omega_{1}-2\omega_{2}\) \(-6\omega_{1}\) \(-4\omega_{1}-2\omega_{2}\) \(-6\omega_{1}-2\omega_{2}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{2}-6\psi\) \(-\omega_{2}-6\psi\) | \(\omega_{2}+6\psi\) \(-\omega_{2}+6\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}+\omega_{2}-6\psi\) \(4\omega_{1}+\omega_{2}-6\psi\) \(6\omega_{1}-\omega_{2}-6\psi\) \(2\omega_{1}+\omega_{2}-6\psi\) \(4\omega_{1}-\omega_{2}-6\psi\) \(\omega_{2}-6\psi\) \(2\omega_{1}-\omega_{2}-6\psi\) \(-2\omega_{1}+\omega_{2}-6\psi\) \(-\omega_{2}-6\psi\) \(-4\omega_{1}+\omega_{2}-6\psi\) \(-2\omega_{1}-\omega_{2}-6\psi\) \(-6\omega_{1}+\omega_{2}-6\psi\) \(-4\omega_{1}-\omega_{2}-6\psi\) \(-6\omega_{1}-\omega_{2}-6\psi\) | \(6\omega_{1}+\omega_{2}+6\psi\) \(4\omega_{1}+\omega_{2}+6\psi\) \(6\omega_{1}-\omega_{2}+6\psi\) \(2\omega_{1}+\omega_{2}+6\psi\) \(4\omega_{1}-\omega_{2}+6\psi\) \(\omega_{2}+6\psi\) \(2\omega_{1}-\omega_{2}+6\psi\) \(-2\omega_{1}+\omega_{2}+6\psi\) \(-\omega_{2}+6\psi\) \(-4\omega_{1}+\omega_{2}+6\psi\) \(-2\omega_{1}-\omega_{2}+6\psi\) \(-6\omega_{1}+\omega_{2}+6\psi\) \(-4\omega_{1}-\omega_{2}+6\psi\) \(-6\omega_{1}-\omega_{2}+6\psi\) | \(6\omega_{1}+2\omega_{2}\) \(4\omega_{1}+2\omega_{2}\) \(6\omega_{1}\) \(2\omega_{1}+2\omega_{2}\) \(4\omega_{1}\) \(6\omega_{1}-2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(4\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-6\omega_{1}+2\omega_{2}\) \(-4\omega_{1}\) \(-2\omega_{1}-2\omega_{2}\) \(-6\omega_{1}\) \(-4\omega_{1}-2\omega_{2}\) \(-6\omega_{1}-2\omega_{2}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{2}-6\psi}\oplus M_{-\omega_{2}-6\psi}\) | \(\displaystyle M_{\omega_{2}+6\psi}\oplus M_{-\omega_{2}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}-6\psi}\oplus M_{4\omega_{1}+\omega_{2}-6\psi}\oplus M_{6\omega_{1}-\omega_{2}-6\psi}\oplus M_{2\omega_{1}+\omega_{2}-6\psi} \oplus M_{4\omega_{1}-\omega_{2}-6\psi}\oplus M_{\omega_{2}-6\psi}\oplus M_{2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}+\omega_{2}-6\psi} \oplus M_{-\omega_{2}-6\psi}\oplus M_{-4\omega_{1}+\omega_{2}-6\psi}\oplus M_{-2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}+\omega_{2}-6\psi} \oplus M_{-4\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}-\omega_{2}-6\psi}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}+6\psi}\oplus M_{4\omega_{1}+\omega_{2}+6\psi}\oplus M_{6\omega_{1}-\omega_{2}+6\psi}\oplus M_{2\omega_{1}+\omega_{2}+6\psi} \oplus M_{4\omega_{1}-\omega_{2}+6\psi}\oplus M_{\omega_{2}+6\psi}\oplus M_{2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}+\omega_{2}+6\psi} \oplus M_{-\omega_{2}+6\psi}\oplus M_{-4\omega_{1}+\omega_{2}+6\psi}\oplus M_{-2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}+\omega_{2}+6\psi} \oplus M_{-4\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}-\omega_{2}+6\psi}\) | \(\displaystyle M_{6\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{1}+2\omega_{2}}\oplus M_{6\omega_{1}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{1}} \oplus M_{6\omega_{1}-2\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}} \oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-6\omega_{1}+2\omega_{2}} \oplus M_{-4\omega_{1}}\oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-6\omega_{1}}\oplus M_{-4\omega_{1}-2\omega_{2}}\oplus M_{-6\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{2}-6\psi}\oplus M_{-\omega_{2}-6\psi}\) | \(\displaystyle M_{\omega_{2}+6\psi}\oplus M_{-\omega_{2}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}-6\psi}\oplus M_{4\omega_{1}+\omega_{2}-6\psi}\oplus M_{6\omega_{1}-\omega_{2}-6\psi}\oplus M_{2\omega_{1}+\omega_{2}-6\psi} \oplus M_{4\omega_{1}-\omega_{2}-6\psi}\oplus M_{\omega_{2}-6\psi}\oplus M_{2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}+\omega_{2}-6\psi} \oplus M_{-\omega_{2}-6\psi}\oplus M_{-4\omega_{1}+\omega_{2}-6\psi}\oplus M_{-2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}+\omega_{2}-6\psi} \oplus M_{-4\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}-\omega_{2}-6\psi}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}+6\psi}\oplus M_{4\omega_{1}+\omega_{2}+6\psi}\oplus M_{6\omega_{1}-\omega_{2}+6\psi}\oplus M_{2\omega_{1}+\omega_{2}+6\psi} \oplus M_{4\omega_{1}-\omega_{2}+6\psi}\oplus M_{\omega_{2}+6\psi}\oplus M_{2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}+\omega_{2}+6\psi} \oplus M_{-\omega_{2}+6\psi}\oplus M_{-4\omega_{1}+\omega_{2}+6\psi}\oplus M_{-2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}+\omega_{2}+6\psi} \oplus M_{-4\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}-\omega_{2}+6\psi}\) | \(\displaystyle M_{6\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{1}+2\omega_{2}}\oplus M_{6\omega_{1}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{1}} \oplus M_{6\omega_{1}-2\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}} \oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-6\omega_{1}+2\omega_{2}} \oplus M_{-4\omega_{1}}\oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-6\omega_{1}}\oplus M_{-4\omega_{1}-2\omega_{2}}\oplus M_{-6\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) |
2 & | 0\\ |
0 & | 2\\ |